Human Organotypic Cultured Cardiac Slices: New Platform For High Throughput Preclinical Human Trials Kang C, Qiao Y, Li G, Baechle K, Camelliti P, Rentschler S, Efimov IR ## **Supplementary Table and Figures** | Preparation | Pro | Con | |--|--|--| | Isolated Primary Cells | - Only model for ion channels currents | Absence of cell to cell couplingChunk isolation process alters
electrophysiology | | iPSC- Derived
Cardiomyocytes
(Monolayers and Tissue
Constructs) | Highest throughput for therapy screening Genetic manipulation Patient specific sampling Unlimited tissue supply | Unable to fully replicate adult
tissue characteristics currently Cell alignment and cell coupling is
disorganized | | Coronary Perfused Intact
Tissue | Large Scale electrophysiologyTissue conduction propertiesFull scaled arrhythmia and defibrillation study | Requires Intact coronary systemFew preparations per heartUnable to be cultured | | Tissue Slices | Tissue level electrophysiology
from anywhere on the heart Viable in organotypic culture for
chronic studies Genetic manipulation | Lower optical Signal-to-noise ratio compared to wedge preparations Cannot study true ionic currents Non-patient specific | ## Supplemental Table 1. Comparison between ex-vivo human cardiac models Pros and cons of each established and currently developing modeling for human *ex-vivo* cardiac study. **Supplemental Figure 1. Quiescent Left Ventricular Slices** Ventricular slices from donor tissue do not exhibit automaticity. Action potential can only be observed and recorded during electrical stimulation. ## Supplemental Figure 2. Activation and AP Duration maps of α₁-AR stimulation Ventricular slices from donor hearts are treated either acutely (fresh and after control culture) or chronically. (a) Activation map of slices at each condition under 1 Hz pacing. Activation appears slower under acute α_1 -AR stimulation and faster under chronic α_1 -AR stimulation. (b) Representative AP duration maps of slices at each condition under 1 Hz pacing. Acute α_1 -AR stimulation clearly increased AP duration, while chronic α_1 -AR stimulation had the reverse effect.